CFPT-8000, -8010, -8100, -8110, -8200, -8210

ISSUE 4: 19 OCTOBER 2004

Delivery Options

Please contact our sales office for current leadtimes

Output Compatibility

HCMOS

Description

 The CFPT-8000 series are surface mount temperature compensated voltage controlled crystal oscillators (TCVCXO) providing a high degree of frequency stability over a wide temperature range. They are particularly suited to Stratum and SONET clock applications

Package Outline

- 19.9 × 12.9 × 7.7mm SMD Standard Frequency
- 19.440MHz

Frequency Stability

- ±2.0ppm (ref. 25°C)
- Supply Voltage: (+Vs) ±5% ≤ ±0.2ppm

Frequency Tolerance

- ≤ ±1.0ppm @ 25°C
- Vc = 2.5V @ 5V Vs
- Vc = 1.5V @ 3.3V Vs

Storage Temperature Range

−25 to 80°C

Environmental Specification

- Vibration: IEC 60068-2-6Test Fc Procedure B4, 10-60Hz 0.75mm displacement, 60-500Hz at 98.1m/s², 30 minutes in each of three mutually perpendicular planes at 1 octave per minute
- Shock: IEC 60068-2-27 Test Ea, 981m/s² acceleration for 6ms duration, 3 shocks in each direction along three mutually perpendicular axes
- Soldering: SMD product, suitable for Convection Reflow soldering. Peak temperature 230°C. Maximum time above 200°C, 90 secs.
- · Sealing: Non hermetic package
- · Marking: Label, resistant to all common solvents

Frequency Control (positive slope)

- ±40ppm min / ±62ppm max (CFPT-8000, 8010)
- ±10ppm min / (CFPT-8100, 8110)
- No adjust (CFPT-8200, 8210)

Voltage Control Pad 1

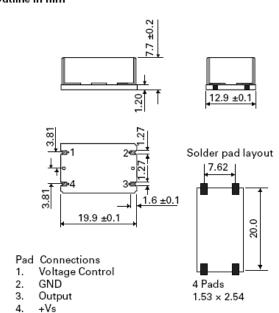
- 2.5V (+0.5V to +4.5) @ 5V supply voltage (CFPT-8000, -8100)
- 1.5V (+0.3V to +3.0) @ 3.3V supply voltage (CFPT-8010, -8110)

Modulation Bandwidth

■ ≥ 2.0kHz

Ageing

- <±3ppm max. in first year
- <±10ppm max. for 15 years


Marking

- Model number
- Frequency
- Date Code (Year/Week)
- Static Sensitivity Symbol ∆ (denotes pad 1)

Minimum Order Information Required

Frequency + Model Number

Outline in mm

Electrical Specifications - maximum limiting values when measured in HCMOS test circuit.

Frequency Range	Supply Voltage	Supply Current	Rise Time(t _r)	Fall Time(t _f)	Duty Cycle	Model Number
13.0 to 26.0MHz	5V±0.25V	15mA	10ns	10ns	40/60%	CPFT-8000
>26.0 to 160.0MHz		40mA	3ns	2ns]	
13.0 to 26.0MHz	3.3V±0.10V	10mA	10ns	10ns	40/60%	CPFT-8010
>26.0 to 120.0MHz]	30mA	3ns	2ns]	
13.0 to 26.0MHz	5V±0.25V	15mA	10ns	10ns	40/60%	CPFT-8100
>26.0 to 160.0MHz]	40mA	3ns	2ns		
13.0 to 26.0MHz	3.3V±0.10V	10mA	10ns	10ns	40/60%	CPFT-8110
>26.0 to 120.0MHz		30mA	3ns	2ns		
13.0 to 26.0MHz	5V±0.25V	15mA	10ns	10ns	40/60%	CPFT-8200
>26.0 to 160.0MHz]	40mA	3ns	2ns]	
13.0 to 26.0MHz	3.3V±0.10V	10mA	10ns	10ns	40/60%	CPFT-8210
>26.0 to 120.0MHz		30mA	3ns	2ns		

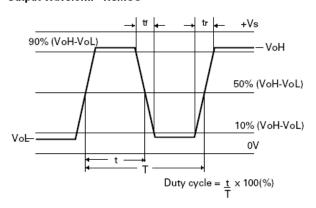
Frequency Stabilities Available Over Operating Temperature Ranges

Operating Temperature Range	Frequency Stabilities Vs Operating Temperature Range							
	±1.0ppm	±1.5ppm	±2.0ppm	±2.5ppm	±3.0ppm	±5.0ppm		
0 to 50°C	Code FP	Code CP*	Code GP*	Code HP*	Code JP*	Code KP*		
−10 to 60°C	_	Code CR	Code GR	Code HR*	Code JR*	Code KR*		
0 to 70°C	_	Code CC	Code GC	Code HC*	Code JC*	Code KC*		
−20 to 70°C	_	_	Code GS	Code HS	Code JS	Code KS		
–25 to 75°C	_	_	_	_	Code JT	Code KT		
−30 to 75°C	_	_	_	_	Code JU	Code KU		
−30 to 85°C	_	_	_	_	_	Code KW		

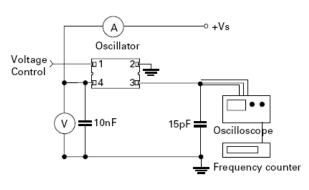
^{*} Denotes the only frequency stabilities available for model numbers CFPT-8000 & -8010

Ordering Example

19.440MHz


CFPT-8000 HP

Frequency


Model number

Frequency Stability Vs Operating Temperature Code

Output Waveform - HCMOS

Test Circuit

